JOURNAL OF APPROXIMATION THEORY 81, 406-420 (1995)

Some Further Generalizations of
Ky Fan’s Best Approximation Theorem

XI1E PING DING ¥

Department of Mathematics, Sichuan National University,
Chengdu, Sichuan, People’s Republic of China 610066

AND

E. TARAFDAR

Department of Mathematics, University of Queensland,
Brisbane, Queensland 4072, Australia

Communicated by Frank Deutsch

Received November 8, 1993; accepted in revised form April 14, 1994

In this paper, several best approximation theorems and coincidence theorems
involving two mappings with point-values and set-values and two different
topological vector spaces are proved. The results improve, unify, and generalize
most of the recent known results in the literature. € 1995 Academic Press, Inc.

1. INTRODUCTION

In 1969, Ky Fan [10] proved the following well-known result on best
approximations:

THEOREM A. Let X be a nonempty compact convex set in a locally convex
Hausdorff topological vector space E. Let - X — E be a continuous mapping.
Then either f has a fixed point in X, or there exist a point y, € X and a continuous
semi-norm p on E such that

0 <p(yo—f(yo)) =min{ p(x — f(y,)): x € X}.

Since then there have appeared many generalizations and applications of
this theorem, e.g. see [4, 5, 8§, 11, 13-17, 21-26, 29-31]. The setvalued
analogues of the best approximation and fixed point theorem A were first
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obtained by Reich [24]. Recently, Prolla [23], Ha [13], Lin {17] and
Carbone [4, 5] have extended Fan’s theorem to two mappings and two
different space settings under their own assumptions, while Reich [24-261],
Sehgal-Singh [29,30], Ha [14], Park [21,22], Kong-Ding [17] and
Ding-Tan [8] generalized Fan’s theorem to continuous or upper semicon-
tinuous set-valued mappings under different assumptions.

The result in Theorem A of Fan can be referred to as ‘best approxima-
tion and fixed point result’. In the same way the results on two space
settings in this paper can be referred to as ‘best approximation and coin-
cidence point results’. The coincidence problem was first studied in the
topological setting in 1946 by Eilenberg and Montgomery [9] (we refer to
Chang and Song [ 6] on the earlier development of the topic). Gorniewicz and
Kucharski [ 12] applied their coincidence theory for k-set contraction pairs in
Banach spaces to the study of fixed point theorems for setvalued mappings and
boundary value problems for differential inclusions. It will also be not out of
place to mention that Mawhin [ 19] developed the coincidence degree theory
to solve the equation Lx = Nx, where L: dom L< X — Z is a Fredholm
mapping of index zero and N: dom N < X' — Z is a nonlinear mapping and
X and Z are Banach spaces, and applied it to boundary value problems of
partial differential equations. While Tarafdar and Teo [32] developed a
coincidence degree theory to solve the inclusion equation Lx e N(x), where
L and N are as above.

In this paper, we obtain some best approximation theorems involving
two mappings and two different spaces which improve, unify and generalize
most of the known results in the literatures mentioned above.

2. PRELIMINARIES

Let X be a nonempty set, 2* denote the family of all subsets of X and
F(X) denote the family of all nonempty finite subsets of X. If X is a
topological space with topology T, we shall use (X, T) and 2'* 7 to denote
the sets X and 2* respectively with emphasis on the fact that X is equipped
with the topology T. If A4 is a subset of a topological space (X, T'), we shall
denote by int . ) (4) and 0,y 7, (A4) the interior and the boundary of 4
in (X, T) respectively. Let (X, T) and (Y, S) be two topological spaces; a
set-valued mapping F: (X, T)— 2" % is said to be upper semicontinuous
on X if for each x,€ X and for each S-open set G in Y with F(x) < G, there
exists a T-open neighborhood U of x, in X such that F(x) = G for all xe U.
Let E be a topological vector space with topology 7. We shall denote by
E* =(E, T)* the topological dual of (£, T). E* is said to sparate points of
E if for each xe E with x#0, there exists an fe E* such that f(x)#0.
We shall denote by W= W(E, E*) the weak topology of E and by
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P =P(E, T) the family of all continuous semi-norms on (E, 7). If X is a
nonempty subset of E, we shall denote by co(X) the convex hull of X and
by (X, T) and (X, W) the set X equipped with the relative topology of T
to X and the relative topology of W to X respectively. We shall denote by
R the set of all real numbers and if = is a complex number, we shall denote
by Re z the real part of z.

Let X be a non-empty subset of a topological vector space (E, T'). For
each x e E, the inward set of X at x, denote by I(x), is defined by

Iy(x)={x+r(y—x):yeXandr>0}.

The closure of I,(x) in (E, T), denoted by I,(x), is called the weakly
inward set of X at x.

Let (E, T) and (F, S) be two topological vector spaces. X be a nonempty
convex subset of (E, T') and let (F, S)* separates points of (F, §). Following
Prolla [23] (also see Mehta-Sessa [20]), a mapping g: X — F is said to be
almost affine if for any x, y € X and for any p e #(F, S)

pleglix+ (1 =A)y)—2)<ip(g(x)—z)+ (1 = 2) p(g(y)—z)

for all ze Fand A€ [0, 1]. Following Carbone [4], 2 mapping g: X — F is
said to be almost quasi-convex if for each z € F, each pe #(F, S) and each
r>0, the set {x e X: p(g(x)—z)<r} is convex.

Obviously, each affine mapping (i.e. g{Ax+ (1 — A)y)=Ag(x)+ (1 — A)g{y)
for all x, ye X and A€ [0, 1]) is almost affine and each almost affine mapping
is almost quasi-convex, but not conversely.

PrOPOSITION 2.1. Let (E, T) and (F, §) be two topological vector spaces,
(F, S)* separates points of (F,S) and X be a nonempty convex subset
of (E,T). Let g: X — F satisfy the following condition (see Ha [13] and
Lin [181) g Y [u, v]) is convex for any u, veg(X), where [u,v]=
{Au+(1—2A)v: A€[0,1]}. Then g is almost quasi-convex.

Proof. For any zeF, pe?(F,S) and r>0. Let x,ye{xeX:
p(g(x)—z)<r}. Then p(g(x)—z))<r and p(g(y)—z)<r. Let u=g(x)
and v=g(y), then x, ye g ~'([u, v]). By the assumption g ~'([«, v]) is convex.
We have [x, y] =g '([w, v]). Thus for each A€ [0, 1] there exists k€ [0, 1]
such that g(Ax+ (1 =) p)=ku+ (1 —k)v=kg(x)+(1—=k)g(y). 1t follows
that

p(g(Ax+ (1 —A)y)—z)=plkg(x)+ (1 —k) g(y)—z)
<kp(g(x)—z)+ (1 —k)p(g(y)—z)
<kr+(l—-Kk)r=r.



BEST APPROXIMATION THEOREMS 409

Hence the set {xe X:p(g(x)—z)<r} is convex and g is almost quasi-
convex. |1

In order to prove our main theorems, the following Lemmas are needed.

LemMma 2.1 Let (E,T) and (F,S) be Hausdorff topological vector
spaces, (E, T)* and (F, §)* the topological duals of (E, T) and (F, S) respec-
tively such that (F, S)* separates points of F. Let X be a nonempty subset
of (E, T), W(E, E*) and W(F, F*) be the weak topology on E and F respec-
tively. Suppose that g:. (X, W(E, E*))— (F, W(F, F*)) is continuous
G (X, W(E,E*))— 2" js us.c. such that each G(x) is S-compact and
pe P(F, S). Then the function V: (X, W(E, E*)) — R defined by

Vix)=d,(g(x), G(x)) =inf{ p(g(x) — ): € G(x)}

is lower semicontinuous (in short, ls.c.), ie. V: X = R is weakly Ls.c.

Proof. Define a function h: (X, W(E, E*))x(F, S)— R by
h(x, z) =p(g(x) —z), for (x,z)eXxF.

For each reR, let A(r)={(x,z)e Xx F: h(x,z) <r}. Let {(x,,z,)}.c4 be
a net in A(r) and (x, z) € X x F such that x, — x in W(E, E*)-topology and
z,—z in S-topology. By the continuity of g, g(x,) — g(x) in W(F, F*)-
topology. By the Corollary of Hahn-Banach theorem (e.g. see [27,
Corollary 2, p.29]), there exists f*e(F, S)* such that f*(g(x)—z)=
plg(x)—z)and | f*(z)|<p(z) for all ze F.

Since g(x,)—z,— g(x)—z in W(F, F*)-topology, we have

h(x,z)y=p(g(x)—z)=f*(g(x)—2)
=Re f*(g(x)—z)
=lim Re f*(g(x,)—z,)

<liminf | f*(g(x,) —z.,)|

< liminf p(g(x,) —z.)

=liminfh(x,,z,)<r

o

So that (x, z) € A(r). Thus A(r} is closed in (X, W(E, E*))x(F, S) and 4 is
lsc. on (X, W(E, E*))x(F,S). Hence by Theorem 251 of Aubin
[1.p. 67] the function Vis lLs.c. on (X, W(E, E*)). 1}
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Remark. 21. When (E, T)=(F, S) and g=/, the identity mapping,
Lemma 2.1 reduces to Lemma 4 of Ding-Tan [8].

LEmMMA 22, Let (E,T) and (F,S) be Hausdorff topological vector
spaces and (F, S)* separates points of (F, S). Let X be a nonempty W(E, E*)-
compact subset of E,g: (X, W(E, E*))— (F, W(F, F*)) continuous and
G: (W(E, E*)) - 2'""5) us.c. such that for each x € X, G(x) is S-compact and
convex. If for each pe® (F,S), there exists x,€ X such that d(g(x,),
G(x,)) =0, then g and G have a coincidence point in X, i.e. there exists x, € X such
that g(x,) € G(x,).

Proof. By the assumption and Lemma 2.1, for each pe 2(F, S) the set
A(p)={xe X d,(g(x),G(x))=0} is nonempty and WI(E, E*)<closed. If
{pi...,p,y 1s a finite subset of #(F,S), then 3 7_,p,e #(F,S) and
AX7_  p) <= Ni_y A(p,). Thus the family {A4(p): pe #(F, S)} has the finite
intersection property. By the W(E, E*)-compactness of X, (), . s, A(P) # .
Take any £€ [\, »r s, A(p) then d,(g(£), G(£)) =0 for all p e Z(F, S). Since
G(X) is S-compact, by Lemma 5 of Ding-Tan [ 8], g(£), eG(%). ]

The following general minimax inequality is Theorem | of Ding-Tan
L71
LemMMa 2.3. Let X be a non-empty convex subset of a topological vector
space and ¢p: X x X - RuU { —cc, + o0} be such that
(1) for each xe X, y — @(x, y) is Ls.c. on each compact subset C of X,
(i1) for each Ae F(X) and for each y e co(A), min, _ 4 ¢(x, y} <0,

(iii) there exist a nonempty compact convex subset X, of X and a non-
empty compact subset K of X such that for each ye X\K, there is an
xeco(Xou{y}) with p(x, y)>0.

Then there exists § € K such that ¢(x, ) <0 for all xe X.
The following result is Theorem 1 of Ha [ 14].
LeMMA 24. Let E,F be Hausdorff topological vector spaces, X < E,

Y < F be nonempty convex sets and Y be compact. Let G: X — 27 be u.s.c.
with nonempty closed and convex values and ¢. X x Y - R be such that

(a) foreach xe X,y —o(x,y)islsc.in Y
(b) for each ye Y, x — ¢(x, y) is quasi-concave in X.

Then

inf sup @(x, )< sup  o@(x, u).

re¥Y xek ue G(X) cex
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3. APPROXIMATION THEOREMS AND COINCIDENCE THEOREMS

In this section, we shall prove several approximation theorems and
coincidence theorems for two mappings and two different space settings.

THEOREM 3.1. Let (E,T) and (F, S) be Hausdorff topological vector
spaces, X be a nonempty convex subset of E and (F, 8)* separate points of
(F,S) Let gi(X, W(E, E*))— (F, W(F, F*)) be almost quasi-convex and
continuous and [ (X, W(E, E*))— (F, S) be continuous where W(E, E*)
and W(F, F*) denote the weak topology on E and F respectively. Suppose
that there exist a nonempty W(E, E*)-compact convex subset X, of X and
a nonempty W(E, E*)-compact subset K of X such that for each ye X\K
and for eachp € P(F, S) thereisan x € co( X, L { y} ) such that p(g(x) — f(y)) <
plg(y)— f(y)). Then either

(a) there exists xq€ K such that g(x,) = f(x,) or
(b) there exist pe P(F,S) and x* € K such that g(x*)edg(X) and
0 <p(g(x*)—f(x*))=min{ p(g(x) — f(x*)): xe X}.

If, in addition, we further assume that g(X) is convex, then we have

plg(x*)— fix*N=min{p(z — flx*)): ze L, (g(x*))}.

Proof. For pe P(F, S), define a function ¢:(X, W(E, E*))x (X, W(E,E*))
— R by elx, y)=plgly)—fly))—plg(x)— f(3)). Then it is easy to see that
for each xe X, y — @(x, y) is weakly ls.c. For each A€ #(X) and y € co(4),
we must have min, . , @(x, y} <0; if this were not true, then there would exist
A={x, ., x,} eF(X) and y=3"7_| L;x,eco(4) with 4, ..,4,20 and

71 4;=1 such that ¢(x,, y)=p(g(y)—f(y)) —plg(x;)— f(y)) >0 for all
i=1,..,n, that is, A< {xeX:p(g(x)— f(y))<p(g(y)—f(y))}. Since g is
almost quasi-convex, we have

yeco(Ayc {xe X:p(g(x)—fy)) <plg(y)—fy))}

which is impossible. By assumption, there exist a nonempty W(E, E*)-compact
convex subset X, of X and a nonempty W(E, E*)-compact subset K of X such
that for each y € X\K, there is an x € co(X, U { y} ) with ¢(x, y) > 0. Hence, by
Lemma 2.3, there exists x, € K such that ¢(x, x,) <0 for all xe X, ie.,

plglx,)—fix,)<p(g(x)—flx,)) forall xelX

If for each peP(F,S), plg(x,)—f(x,))=0, then as x,eK for each
peP(F,S), it follows from Lemma 2.2 with G = {f} being a single valued
mapping that there exists an x, € K such that g{x,) =/f(x,).
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Otherwise there exists p e 2(F, ) and, x, = x* € K such that
0 <p(g(x*)—f(x*))=min{ p(g(x) — f(x*)): x€ X}
=min{ p(z — f(x*)): ze g(X)}.

andhencef(x*)¢g(X) If g *)emt,(g(X)) then there exist 4,0 < A < 1, such
that z = Ag(x*) + (1 — 1) f(x*} e g(X)}. It follows that

0 <plg(x*)— fx*)) <p(z— f(x*))
=p(Ag(x*)+ (1 =2) f(x*) — f(x¥))
=Ap(g(x*) — flx*)) <p(g(x*)— fx*))

which is impossible and so g(x*) e dg( X).

Now assume that g(X) is convex. Let z€ Iy, (g(x*)) \g(X). Since g(X) is
convex, there exist y € X and r > 1 such that z = g(x*) + r(g(y) — g(x*)). Sup-
pose that

—f(x*)) < plg(x*) — f(x*)).
Then we have g(1)=(1 —1/r)g(x*)+ 1/rzeg(X) and

p(g(x*) — f(x*) < plg(y) — f(x*))

1 1
p <<1 —;)g(x*) +;:—f(x*)>

S(l—£>P(g(-r*)—f(—r*))+;P(Z—f(X*))
<plg(x*) — f(x*))
which is impossible and hence
p(g(x*) = fx* N <plz—f(x*))  forall zely x(g(x*)).
Since p is continuous, we must have
p(g(x*) — f(x*)) =min{p(z — f(x*)): 2 € L x,(g(x*)). 1

Remark. 3.1. Theorem 3.1 improves and generalizes Theorem | and
Theorem 2 of Lin [ 18], Theorem 3 of Ha [13] with the condition being
replaced by (c); Theorem of Prolla [23], Theorems 1 and 3 of Sehgal-Singh-
Smithson [31]. Theorems 1 and 2 of Carbone [4], Theorem 2.1 of Carbone
[5] and Theorem 2 of Kapoor [ 15] in several aspects.
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THEOREM 3.2. Let (E, T)and(F, S) be Hausdorff topological vector spaces,
X be a nonempty convex subset of E and (F, S)* separate points of (F, S). Let
g: (X, W(E, E*)) — (F, W(F, F*)) be almost quasi-convex and continuous and
(X, W(E, E*))— (F, S) be continuous. Suppose that

(1) there exist a nonempty W(E, E* }-compact convex subset X, of X and
a nonempty W(E, E*)-compact subset K of X such that for each y € X\K and
for each pe # (F, S), there is an xeco(Xou{y}) with p(g(x)— f(y)) <
plg(y)—fly)

(2) for each x € X there exists a number A (real or complex, depending on
whether the vector space F is real or complex) such that || <1 and

Ag(x) +(1=2) flx)eg(X)
Then there exists a point x, € K such that g(x,) = f(x,).

Proof. Suppose that g(x) # f(x) for all x e K. By Theorem 3.1, there exists
peP(F,S)and x* € K such that

0<p(g(x*)—f(x*))<p(z— f(x*) forall zeg(X)

Now by the hypotheses, there exists a number A such that |4 <1 and
o=Ag(x*)+ (1 —4) f(x*) e g(X) and hence

plg(x*) —f(x*)) < p(Ag(x*) + (1 = A) f(x*) — f(x*))
< |4 p(g(x*) — f(x*))
which contradicts the fact [4] <1 and p(g(x*) — f(x*))>0. 1

Remark 32. Theorem 3.2 generalizes Theorems 3 and 4 of Lin [ 18] and
Theorem 4 of Ha [13].

THEOREM 3.3. Let X be a nonemtpy W(E, E*)-compact convex subset of
a Hausdorff topological vector space (E,T) and (F,S) be a Hausdorff
locally convex topological vector space. Let g: (X, W(E, E*))— (F, W(F, F*))
be almost quasi-convex and continuous and G: (X, W(E, E*))— 2" be us.c.
such that each G(x) is S-compact and convex. Then either (a) there exist € X
such that g(2) € G(R); or (b) there exist x,€ X, uye G(x,) and pe P(F, S) such
that

0<p(g(xy) —ug) <plg(x)—uy,)  forall xeX.

In addition, if we assume that g(X) is convex, then we have

0 <p(g(xo) —up) < p(z — i) for all zel,x(8(x0))
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Proof. Suppose g(x)¢G(x) for all xeX, then 0¢g(x)—G(x) and
g(x)—G(x) 1s a S-compact convex subset of F for each xeX. By
Theorem 3.4 of Rudin [28, p.58], there exist §, >0 and a continuous linear
functional p, e F* such that

d, (g(x), G(x)) = uelg{) lp.(g(x)—u)l >6..

By Lemma 2.1, there exists an open W(E, E*)-neighbourhood N(x) of x
such that

d, (g(z), G(z)) >4, forall zeN(x).

Since X =), _, N(x) and X is W(E, E*)-compact, there exists a finite set
{x1,..,x,} =X such that X< |J{_, Mx,). Let p=max{|p,|:i=1,..,n}
and d=min{d, :i=1, .., n}, then pe P(F, S). For each x € X, there exists
je{l,...n} such that x e N(x;); it follows that for each ue G(x)

plg(x) —u)y= max [p. (g(x)—u)| >|p(glx) ~u)| > d, (g(x), G(x))

so that
d,(g(x), G(x))=d, (g(x), G(x))>d,>4.
Hence we have
d,(g(x), G(x))>0 forall xelX.
Now define a function ¢: (X, W(E, E*))x(F, S)— R by

p(x,z)= mmp(g(y)—")— (g(x)—z).

By the continuity of g and p, it is easy to see that ¢ is continuous. Thus
the condition (a) of Lemma 2.4 is satisfied. For each ze(F, S) and AeR,
we have

B={xeX: ¢(x,z)> 1}
={xeX:p(g(x)—1z) <min p(g(y)—z) -4},
ye
Since g is almost quasi-convex, therefore B is convex and so the condition (b)
of Lemma 2.4 is satisfied. By proposition 3.1.11 of Aubin-Ekeland [2. p.112],

G(X)=U,.» G(x) is S-compact. As the assumptions on X, G and the graph
G, (@) of G remain unchanged in the completion of F, without loss of generality,
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we may assume that (F, S) is complete. Let ¥Y=Co(G(X}), then Yo F is
S-compact and convex. By applying Lemma 2.4, we have

inf sup ¢(x,z)<  sup  @(x, u)
ze¥YxelX veG(x), xe X

Since for each ze Y,

sup @(x, z) =sup [min p(g(y)—z)—p(g{x)—z}]

xeX xeX yrveX
=min p(g(y) —z)—min p(g(x) —z) =0,
geX xe X
We have

sup  @(x,u)=0

ueG(x), xeX

Since ¢: (X, W(E, E*)) x(F, S) — R is continuous and the graph Gr(G) is
compact in (X, W(E, E*))x(F, S), there exists (x,, 4y) € Gr(G) such that

P(xg, Ug) = rpigp(g( ¥)—up) —p(g{xg) —uy) = 0.

It follows that u,e G(x,) and
d<d,(g(xe), Glxo)) < plglxy) —uy) < pg(x)—uyg) forall xeX.

Now further assume that g(X) is convex. For x eI, y(g(x,))\g(X) there
exist veg(X) and r>1 such that z=g(x,) +r(v —g(x,)). Suppose that
plz—ug) <plg(xp) —up). Since v=1/rz+(1—1/r) g{x;)eg(X), we must
have

1 1
plglxe) —up)<plv—uy)=p (;:+ (1 —;) g(xo)—uo>

1 1
S;p(: —Ug) + <1 _;> p(g(xo) —up)
<p(gl(xo) —tty)
which is impossible. Therefore we must have

pla(xy) —ue) < p(z~uy) for all ZEIng)(g(Xo))-

Since p is continuous, we have

0 <plglxg) —uy) <plz—g) forall zel,y (g(xo)). 1§
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Remark. 3.3. If one take E=F and g: (X, W(E, E*))— FE as the iden-
tity mapping, Theorem 3.3 reduces to Theorem4 of Ding-Tan [7].
Theorem 3.3 also generalizes Theorem 3 of Ha [14], Theorem 3 of
Park [22], Corollary 1 of Browder [3], Theorem 3.1 of Reich [25] and
Theorem 1 of Fan [10] to two mappings and two different space setting.
Komiya [16] also has obtained some similar results on two setvalued
mappings, we note that his results are not comparable with ours.

As an equivalent version of Theorem 3.3, we have

THEOREM 3.4. Let X be a nonempty W(E, E*)-compact convex subset of
a Hausdorff topological vector space (E, T) and (F,S) be a Hausdorff
locally convex topological vector space. Suppose that g: (X, W(E, E*))—>
(F, W(F, F*)) almost quasi-convex and continuous and G: {X, W(E, E*)) >
2055 ys.c. such that each G(x) is S-compact and convex. If one of the
Jfollowing two conditions is satisfied:

(1) for each pe P(F, S), each x € X with d (g(x), G(x))>0 and each
ue G(x),

d,(u, g( X)) <p(g(x)—u);

or

(2) g(X) is convex and for each peP(F,S), each xeX with
d,(g(x), G(x)) >0 and each ue G(x),

d,(u, 1,(X)(g(x))) <p(glx)—u);

then there exists a point X € X such that g(£)e G(R).

Remark 3.4. Theorem 3.4 generalizes Theorem 5 of Ding-Tan [8] and
Theorem 2 of Reich [26] to two mappings and two different space settings.

THEOREM 3.5. Let X be a nonempty W(E, E*)-compact convex subset of a
Hausdorff topological vector space (E, T) and (F, S} be a Hausdorff locally con-
vex topological vector space. Let g: (X, W(E, E*)) — (F, W(F, F*)) be almost
quasi-convex and continuous such that g(X') is convex and G: (X, W(E, E*))—
255 be u.s.c. such that each G(x) is S-compact convex. Further, assume that the
Jfollowing condition is satiesfied.

(a) for each xe X with g(x)€d s y\g(X)\G(x) and ue G(x), there
exists a number A (real or complex, depending on whether the vector space
F is real or complex) with |A| <1 such that Ag(x)+ (1 —Ayuel,  (g(x)).

Then there exists £ € X such that g(£) e G(X).
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Proof. Suppose g{x)¢ G(x) for all xe X. By Theorem 3.3, there exist
xo€ X, uye G(x,) and pe #(F, S) such that

0 <p(glxe)~tto) <plz—ug)  forall zeTp(glxe)).

Case 1. 1If g(xo)eint r u\(g(X)), then I, (g(xo))=F and hence
u=3g(xo)+ 3uo€ F= I,y (g(x,)), so that
0<P(g(xo)_uo)<P(u“uo)=%P(g(xo)“uo)
which is absurd.

Case 2. If g(x¢)€0r u\8(X), g(x0) €0k w)8(X)\G(x,) so that by
condition (a), there exists 4 with [A]| <1 such that Ag{xy)+ (1 —A)uge
I x)(8(x4)). It follows that

0 <p(g(xo) —uy) < plig(xe) + (1 — Ayug —ug)
< |4 plglxe) —uy)

which is again a contradiction. Therefore there exists £e X such that
g(£)eG(3). 1

Remark 3.5. If one takes E= F= a locally convex Hausdorff topologi-
cal vector space and g as the identity mapping, Theorem 3.5 reduces to
Theorem 6 of Ding-Tan [8] and hence Theorem 3.1 improves and
generalizes Theorem 4 of Ha [14], Theorem 3.1 of Reich [25], Theorem 4
of Park [22] and Theorem 3 of Fan [10] to two mappings and two
different space settings.

If the assumptions “X is W(E, E*)-compact, g: (X, W(E, E*))—
(F, W(F, F*)) is continuous and G: (X, W(E, E*))— 275 are usc.” is
replace by the assumption “X is T-compact, g: (X, T)— (F, S) is con-
tinuous and G:(X, T) — 2% 5 are us.c.” in Theorems 3.3, 3.4 and 3.5, then,
by the same argument, we obtain the following theorems.

THEOREM 3.3°. Let X be a nonempty compact convex subset of a
Hausdorff topological vector space E and F be a Hausdorff locally convex
topological vector space. Let g: X — 2¥ be almost quasi-convex and con-
tinuous and G: X — 2 be u.s.c. such that each G(x) is compact and convex.
Then either (a) there exist £€ X such that g(X)e G(X); or (b) there exist
xq€ X, uge G(x,) and pe P(F) such that

0<plg(xg)—ug)<plg(x)—uy)  forall xeX.
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In addition if g(X) is convex, then we have
0 <plglxy) —up) < p(z—uy) Sor all sel v(glxg))

THEOREM 3.4. Let X be a nonemtpy compact convex subset of a
Hausdorff topological vector space E and F be a Hausdorff locally convex
topological space. Suppose that g: X — F is almost quasi-convex and con-
tinuous and G: X — 2 be u.s.c. such that each G(x) is compact and convex.
If one of the following two conditions is satisfied:

(1) for each pe P(F), each xe X with d,(g(x), G(x))>0 and each
ue G(x)

d,(u, g(X)) <p(g(x)—u);

(2} g(X) is convex and for each peP(F), each xeX with
d,(g(x), G(x))>0 and each ue G(x), d(u, I, x,(g(x))) <p(g(x)—u); then
there exists a point X € X such that g(X) € G(%).

THEOREM 3.5°. Let X be a nonempty compact convex subset of a
Hausdorff topological vector space and F be a Hausdorff locally convex
topological vector space. Let g: X — F be almost quasi-convex and continuous
such that g(X) is convex and G: X — 2F be u.s.c. such that each G(x) is compact
and convex. Suppose the following condition is satisfied:

(a) for each xeX with g(x)ed (g(X)\G(x) and ue G(x), there
exists a number A (real or complex, depending on whether the vector space

F is real or complex) with |A| <1 such that Ag(x)+ (1 —A) uel,y (g(x)).
Then there exists £ € X such that g(X) e G(X).

COROLLARY 3.1 Let X be a nonempty compact convex subset of a
Hausdorff topological vector space E and F be a Hausdorff locally convex
topological vector space. Let g: X — F be almost quasi-convex and continuous
and G: X — 27 be u.s.c. with nonempty closed convex values such that

(a) foreach xe X, G(x)ng(X)#¢,
(b) g(X) is convex.

Then there exists a point £ € X such that g(£) e G(X).
Proof. Define a mapping H: X - 27 by
H(x)=G(x)ng(X) foreach xeX.

Then for each x € X, H(x) is non-empty compact convex. Since G is u.s.c.
and g(X) is compact, H is also u.s.c. Note that for each p e 2(F) and each
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xe X with d,(g(x), H(x))>0 and each ue H(x)=G(x)ng(X), we have
d,(u, g(X))=0<d,g(x), H(x)) < p(g(x)—u). By Theorem 3.4, there exists a
point £ € X such that g()e H(X)=G(X) ng(X)>G(%). |

20.

21

Remark 3.7. Corollary 3.1 improves Theorem 2.2 of Mehta-Sessa [20].
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