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1. INTRODUCTION

In 1969, Ky Fan [10] proved the following well-known result on best
approximations:

THEOREM A. Let X be a nonempty compact convex set in a locally convex
Hausdorff topological vector space E. Let f: X -+ E be a continuous mapping,
Then either fhas afixedpoint in X, or there exist a point Yo E X and a continuous
semi-norm p on E such that

o<p(Yo - f(yo» = min{p(x - f(yo»: x E X}.

Since then there have appeared many generalizations and applications of
this theorem, e.g. see [4, 5,8, 11, 13-17,21-26,29-31]. The setvalued
analogues of the best approximation and fixed point theorem A were first
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obtained by Reich [24]. Recently, Prolla [23], Ha [13], Lin [17] and
Carbone [4, 5] have extended Fan's theorem to two mappings and two
different space settings under their own assumptions, while Reich [24-26],
Sehgal-Singh [29,30], Ha [14], Park [21,22], Kong-Ding [17] and
Ding-Tan [8] generalized Fan's theorem to continuous or upper semicon
tinuous set-valued mappings under different assumptions.

The result in Theorem A of Fan can be referred to as 'best approxima
tion and fixed point result'. In the same way the results on two space
settings in this paper can be referred to as 'best approximation and coin
cidence point results'. The coincidence problem was first studied in the
topological setting in 1946 by Eilenberg and Montgomery [9] (we refer to
Chang and Song [6] on the earlier development of the topic). Gorniewicz and
Kucharski [12] applied their coincidence theory for k-set contraction pairs in
Banach spaces to the study of fixed point theorems for setvalued mappings and
boundary value problems for differential inclusions. It will also be not out of
place to mention that Mawhin [ 19] developed the coincidence degree theory
to solve the equation Lx = Nx, where L: dam LeX -> Z is a Fredholm
mapping of index zero and N: dom N eX -> Z is a nonlinear mapping and
X and Z are Banach spaces, and applied it to boundary value problems of
partial differential equations. While Tarafdar and Teo [32] developed a
coincidence degree theory to solve the inclusion equation Lx E N(x), where
Land N are as above.

In this paper, we obtain some best approximation theorems involving
two mappings and two different spaces which improve, unify and generalize
most of the known results in the literatures mentioned above.

2. PRELIMINARIES

Let X be a nonempty set, 2x denote the family of all subsets of X and
3"(X) denote the family of all nonempty finite subsets of X. If X is a
topological space with topology T, we shall use (X, T) and 2(x, T) to denote
the sets X and 2x respectively with emphasis on the fact that X is equipped
with the topology T. If A is a subset of a topological space (X, T), we shall
denote by int(x, T) (A) and 8(x. T)' (A) the interior and the boundary of A
in (X, T) respectively. Let (X, T) and (Y, S) be two topological spaces; a
set-valued mapping F: (X, T) -> 2( y. 5) is said to be upper semicontinuous
on X if for each Xo E X and for each S-open set Gin Y with F(x) c G, there
exists a T-open neighborhood U of X o in X such that F(x) c G for all x E U.
Let E be a topological vector space with topology T. We shall denote by
E* = (E, T)* the topological dual of (E, T). E* is said to sparate points of
E if for each x E E with x #- 0, there exists an fEE * such that f( x) #- O.
We shall denote by W = W( E, E *) the weak topology of E and by
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q> = q>(E, T) the family of all continuous semi-norms on (E, T). If X is a
nonempty subset of E, we shall denote by co( X) the convex hull of X and
by (X, T) and (X, W) the set X equipped with the relative topology of T
to X and the relative topology of W to X respectively. We shall denote by
IR the set of all real numbers and if z is a complex number, we shall denote
by Re z the real part of z.

Let X be a non-empty subset of a topological vector space (E, T). For
each x E E, the inward set of X at x, denote by IxC'\:), is defined by

I x( x) = {x + r( y - x): y E X and r > O}.

The closure of Ix(x) in (E, T), denoted by Ix(x), is called the weakly
inward set of X at x.

Let (E, T) and (F, S) be two topological vector spaces. X be a nonempty
convex subset of (E, T) and let (F, S)* separates points of (F, S). Following
Prolla [23] (also see Mehta-Sessa [20]), a mapping g: X -> F is said to be
almost affine if for any x, y E X and for any p E 9"( F, S)

p( g( Ax + (I - A.) y) - z) ~ Ap( g( x) - z) + (I - A) p( g( y) - z)

for all z E F and AE [0, 1]. Following Carbone [4], a mapping g: X -> F is
said to be almost quasi-convex if for each z E F, each p E 9"(F, S) and each
r>O, the set {XEX:p(g(x)-z)<r} is convex.

Obviously, each affine mapping (i.e. g( Ax + (I - ),)y) = Ag(x) + (I - A) g( y)
for all x, y E X and AE [0, I]) is almost affine and each almost affine mapping
is almost quasi-convex, but not conversely.

PROPOSITION 2.1. Let (E, T) and (F, S) be two topological vector spaces,
(F, S)* separates points of (F, S) and X be a nonempty convex subset
of (E, T). Let g: X -> F satisfy the following condition (see Ha [13] and
Lin [18]): g-I([U, v]) is convex for any u, vEg(X), where [u, v] =
{ AU + (I - A) v: AE [0, I]}. Then g is almost quasi-convex.

Proof For any zEF, pEq>(F,S) and r>O. Let X,YE{XEX:
p(g(x)-z)<r}. Then p(g(x)-z))<r and p(g(y)-z)<r. Let u=g(x)
and v = g(y), then x, y E g-l([U, vJ). By the assumption g-l( [u, v]) is convex.
We have [x, y] cg-1([u, v]). Thus for each AE [0, 1] there exists k E [0, 1]
such that g(Ax + (l - A)Y) = ku + (l - k)v = kg(x) + (1 - k)g( y). It follows
that

p( g( AX + (l - A)y) - z) = p(kg( x) + (l - k) g( y) - z)

~ kp( g(x) - z) + (1 - k) p( g( y) - z)

< kr+ (l-k)r = r.
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Hence the set {x E X: p(g( x) - z) < r} is convex and g is almost quas\
convex. I

In order to prove our main theorems, the following Lemmas are needed.

LEMMA 2.1 Let (E, T) and (F, S) be Hausdorff topological vector
spaces, (E, T)* and (F, S)* the topological duals of(E, T) and (F, S) respec
tively such that (F, S)* separates points of F. Let X be a nonempty subset
of (E, T), W(E, E*) and W(F, F*) be the weak topology on E and F respec
tively. Suppose that g: (X, W(E, E*)) -> (F, W(F, F*)) is continuous
G: (X, W( E, E *» -> 2 (F. S) is U.S.c. such that each G( x) is S-compact and
pE fJlJ(F, S). Then the function V: (X, W(E, E*» -> lR defined by

V(x) = dp(g(x), G(x)) =inf{p(g(x) -z): Z E G(x)}

is lower semicontinuous (in short, l.s.c.), i.e. V: X -> lR is ",,'eakly l.s.c.

Proof Define a function h: (X, W( E, E *» x (F, S) -> lR by

h(x, z) = p( g(x) - z), for (X,Z)EXxF.

For each rElR, let A(r)= {(x, Z)EXxF: h(x, z)~r}. Let {(x""Z"')}""A be
a net in A(r) and (x, z)EXxFsuch that X",->X in W(E, E*)-topology and
Z",->Z in S-topology. By the continuity of g,g(x",)->g(x) in W(F,F*)
topology. By the Corollary of Hahn-Banach theorem (e.g. see [27,
Corollary 2, p. 29]), there exists f* E (F, S)* such that f*( g(x) - z) =
p(g(x)-z) and If*(z)I ~p(z) for all zEF.

Since g(x",) - Z'" -> g(x) - Z in W(F, F* )-topology, we have

h(x, z) = p(g(x) - z) = f*(g(x) - z)

= Ref*(g(x) -z)

= lim Ref*(g(x",) -z",)
'"

~ lim inf If*(g(x",) - z",)1
'"

~ lim infp(g(x",) - z",)
'"

= lim inf h(x"" z",) ~ r
'"

So that (x, z) E A(r). Thus A(r) is closed in (X, W(E, E*» x (F, S) and h is
l.s.c. on (X, W(E, E*» x (F, S). Hence by Theorem 2.5.1 of Aubin
[ 1. p. 67] the function V is l.s.c. on (X, W( E, E *». I
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Remark. 2.1. When (E, T) = (F, S) and g = I, the identity mapping,
Lemma 2.1 reduces to Lemma 4 of Ding-Tan [8].

LEMMA 2.2. Let (E, T) and (F, S) be Hausdorff topological vector
spaces and (F, S)* separates points of(F, S). Let X be a nonempty W(E, E*)
compact subset of E,g:(X, W(E,E*))->(F, W(F,F*)) continuous and
G: (W(E, E*)) -> 2(F. S) U.S.c. such that for each x E X, G(x) is S-compact and
convex. If for each pEfllJ (F, S), there exists XpEX such that dp(g(xp),
G(xp)) = 0, theng and G have a coincidence point in X, i.e. there exists Xo E X such
that g(xo) E G(xo).

Proof By the assumption and Lemma 2.1, for each p E fllJ(F, S) the set
A(p)={xEX:dp(g(x),G(x))=O} is nonempty and W(E,E*)-c1osed. If
{Pl>""p,,} is a finite subset of &P(F,S), then 'L7~IPiEfllJ(F,S) and
A('L7= I Pi) C n~'~ I A(pJ Thus the family {A(p): p EPJ'(F, S)} has the finite
intersection property. By the W(E, E* )-compactness ofX, n p E9"(F. S) A(p) # rjJ.
Take any .XE npEY(F.S} A(p) then dp(g(x), G(x)) =0 for allpEfllJ(F, S). Since
G(.x) is S-compact, by Lemma 5 of Ding-Tan [8], g(.X), EGCX). I

The following general minimax inequality is Theorem I of Ding-Tan
[7].

LEMMA 2.3. Let X be a non-empty convex subset of a topological vector
space and r:p: X x X -> IR u { - 00, + oo} be such that

(i) for each x E X, Y -> r:p( x, y) is /.s.c. on each compact subset C of X,

(ii) for each A E ff(X) and for each y E co(A), min XEA r:p(x, y) ~ 0,

(iii) there exist a nonempty compact convex subset Xo of X and a non-
empty compact subset K of X such that for each y E X\K, there is an
x E co(Xo U {y}) with r:p(x, y) > O.

Then there exists .V E K such that r:p(x, y) ~ 0 for all x E X.

The following result is Theorem I of Ha [14].

LEMMA 2.4. Let E, F be Hausdorff topological vector spaces, Xc E,
Y c F be nonempty convex sets and Y be compact. Let G: X -> 2 Y be u.s.c.
with nonempty closed and convex values and r:p: X x Y -> IR be such that

(a) for each x E X, Y -> r:p(x, y) is l.s.c. in Y

(b) for each y E Y, X -> r:p( x, y) is quasi-concave in X.

Then

inf sup r:p(x, y) ~ sup r:p(x, u).
yE Y XEX UEG(X),tEX
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In this section, we shall prove several approximation theorems and
coincidence theorems for two mappings and two different space settings.

THEOREM 3.1. Let (E, T) and (F, S) be Hausdorff topological vector
spaces, X be a nonempty convex subset of E and (F, S)* separate points of
(F, S) Let g:(X, W(E, E*)) ----> (F, W(F, F*) be almost quasi-convex and
continuous and f: (X, W(E, E*)) ----> (F, S) be continuous where W(E, E*)
and W(F, F*) denote the weak topology on E and F respectively. Suppose
that there exist a nonempt.v W(E, E*)-compact convex subset Xo of X and
a nonempty W(E, E*)-compact subset K of X such that for each y E X\K
andfor each P E :!J'(F, S) there is an x E co(Xo U {y} ) such that p( g(x) - f( y» <
p(g(y) - f(y). Then either

(a) there exists Xo E K such that g(xo) = f(x o) or

(b) there exist p E:!J'( F, S) and x* E K such that g(x*) Eog( X) and
o<p(g(x*) - f(x*» = min{p(g(x) - f(x*»: XE X}.

If, in addition, we further assume that g(X) is convex, then we have

p( g(x*) - f(x*) = min {p(z - f(x* i): z E l<rlxj(g(x*»}.

Proof For p E :!J'(F, S), define a function cp:(X, W(E, E*» x (X, W(E,E*»
----> IR by cp(x,y)=p(g(y)- f(y»-p(g(x)- f(y». Then it is easy to see that
for each x E X, Y ----> cp(x, y) is weakly l.s.c. For each A E 3"(X) and y E co(A),
we must have min, E A cp(x, y) ~ 0; if this were not true, then there would exist
A={x" ... ,Xn }E3"(X) and y=2::;'~IAiXiECO(A) with )'l, ...,A,,~O and
L7~lAi=1 such that cp(xhy)=p(g(y)-f(y))-p(g(x;)-f(y))>O for all
i=l, ...,n, that is, AC{XEX:p(g(x)-f(y»<p(g(y)-f(y»}. Since g is
almost quasi-convex, we have

Y E co(A) C {x E X: p( g(x) - f( y» <p( g(y) - f( y»}

which is impossible. By assumption, there exist a nonempty W( E, E *)-compact
convex subset Xo of X and a nonempty W(E, E* )-compact subset K of X such
that for each y E X\K, there is an x E co(XoU {.v}) with cp(x, y) > O. Hence, by
Lemma 2.3, there exists x p E K such that cp(x, x p ) ~ 0 for all x E X, i.e.,

for all XE X.

If for each pE/3"(F,S), p(g(xp)-f(xp» =0, then as xpEK for each
p E :!J'( F, S), it follows from Lemma 2.2 with G = {J} being a single valued
mapping that there exists an X oE K such that g(xo) = f(xo).
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Otherwise there exists p E f-lJ(F, S) and, x p = x* E K such that

o<p( g(x*) - f(x*)) = min{ p( g(x) - f(x*)): x E X}

=min{p(z- f(x*)): zEg(X)}.

and hencef(x*) ¢= g(X). Ifg(x*) E int F ( g(X)), then there exist A, 0 < A< I, such
that Z=Ag(X*) + (1- A)f(x*) E g(X). It follows that

o<p(g(x*) - f(x*)) ~p(z - f(x*))

= p(Ag(X*) + (I - A)f(x*) - f(x*))

= }.p( g(x*) - f(x*)) <p( g(x*) - f(x*))

which is impossible and so g(x*) E og(X).
Now assume that g(X) is convex. Let zEIg1x)(g(x*))\g(X). Since g(X) is

convex, there exist y E X and r> I such that Z= g(x*) + r( g( y) - g(x*)). Sup
pose that

p(Z - f(x*)) <p(g(x*) - f(x*)).

Then we have g(y) = (l - I/r)g(x*) + I/rz E g(X) and

p( g(x*) - f(x*)) ~p(g(y) - f(x*))

~p ((I -~)g(x*) + ~ z - f(x*))

~ (I -Dp( g(x*) - f(x*)) + ~ p(z - f(x*))

<p(g(x*)- f(x*))

which is impossible and hence

p(g(x*) - f(x*)) ~p(z - f(x*))

Since p is continuous, we must have

for all Z E I g ( x)( g(x*)).

p(g(x*) - f(x*)) = min{p(z - f(x*)): z E Ig(x)(g(x*)). I

Remark. 3.1. Theorem 3.1 improves and generalizes Theorem I and
Theorem 2 of Lin [18], Theorem 3 of Ha [13] with the condition being
replaced by (c); Theorem of Prolla [23], Theorems I and 3 of Sehgal-Singh
Smithson [31]. Theorems I and 2 of Carbone [4], Theorem 2.1 of Carbone
[5] and Theorem 2 of Kapoor [ 15] in several aspects.
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THEOREM 3.2. LRt (E, T) and(F, S) be Hausdorff topological vector spaces,
X be a nonempty convex subset of E and (F, S)* separate points of(F, S). LRt
g: (X, W(E, E*)) -+ (F, W(F, F*» be almost quasi-convex and continuous and
f: (X, W(E, E*)) -+ (F, S) be continuous. Suppose that

(I) there exist a nonempty W(E, E* )-compact convex subset X o ofX and
a nonempty W(E, E* )-compact subset K of X such that for each y E X\K and
for each pEflI' (F,S), there is an XECO(XoU{y}) ~...ith p(g(x)-f(y))<
p( g( y) - f( y)),

(2) for each x E X there exists a number A (real or complex, depending on
whether the vector space F is real or complex) such that IAI < I and
Ag(X) +(I - A.) f(x) E g(X).

Then there exists a point Xo E K such that g(xo) = f(x o).

Proof Suppose that g(x) of f(x) for all xEK. By Theorem 3.1, there exists
p E flI'(F, S) and x* E K such that

o<p( g(x*) - f(x*» ~p(z - f(x*) for all Z E g( X).

Now by the hypotheses, there exists a number A such that 1).1 < I and
Z = Ag(X*) + (I - ),) f(x*) E g(X) and hence

p( g(x*) - f(x*)) ~p(Ag(X*)+ (1 - A)f(x*) - f(x*))

~ IAI p(g(x*) - f(x*))

which contradicts the fact IAI < I and p(g(x*) - f(x*)) > O. I

Remark 3.2. Theorem 3.2 generalizes Theorems 3 and 4 of Lin [18] and
Theorem 4 of Ha [ 13].

THEOREM 3.3. Let X be a nonemtpy W(E, E*)-compact convex subset of
a Hausdorff topological vector space (E, T) and (F, S) be a Hausdorff
locally convex topological vector space. Let g: (X, W(E, E*)) -+ (F, W(F, F*)
be almost quasi-convex and continuous and G: (X, W(E, E*)) -+ 2(F. 5) be u.s.c.
such that each G(x) is S-compact and convex. Then either (a) there exist .R E X
such that g(x) E G(x); or (b) there exist X oEX, UoE G(xo) and p E flI'(F, S) such
that

for all XE X.

In addition, if we assume that g(X) is convex, then we have
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Proof Suppose g(x) ¢ G(x) for all x E X, then 0 ¢ g(x) - G(x) and
g(x) - G(x) is a S-compact convex subset of F for each x E X. By
Theorem 3.4 of Rudin [28, p.58], there exist J x> 0 and a continuous linear
functional Px E F* such that

dp,(g(x), G(x) = inf IPx(g(x) - u)1 > Jx '
UEG(X)

By Lemma 2.1, there exists an open W(E, E*)-neighbourhood N(x) of x

such that

for all Z E N(x).

Since X = UX E X N( x) and X is W( E, E *)-compact, there exists a finite set
{x], ... ,xn}cX such that XcU7=,N(xJ Let p=max{lpx,l:i=I, ... ,n}
and 0 = min{ ox,: i = I, ... , n}, then p E f1}(F, S). For each x E X, there exists
j E { I, ..., n} such that x E NC.....); it follows that for each u E G( x)

p(g(x) - u) = max IPx,(g(x) - u)1 ~ IPxJ(g(x) - u)1 ~ dp,(g(x), G(x»)
] :-:;;, i~1J J

so that

dp(g(x), G(x))~dp,(g(x),G(x)>JxJ~J.
I

Hence we have

for all x E X.

Now define a function cp: (X, W(E, E*» x (F, S) -> IR by

cpr x, z) = min p( g( y) - z) - p( g(x) - z).
yeX

By the continuity of g and p, it is easy to see that cp is continuous. Thus
the condition (a) of Lemma 2.4 is satisfied. For each z E (F, S) and A. E IR,
we have

B= {XEX: cp(x, z) > A.}

= {x EX: p( g(x) - z) < min p( g( y) - z) - A. } .
yEX

Since g is almost quasi-convex, therefore B is convex and so the condition (b)
of Lemma 2.4 is satisfied. By proposition 3.1.11 of Aubin-Ekeland [2. p.l12],
G( X) = UX E X G( x) is S-compact. As the assumptions on X, G and the graph
Gr ( G) ofG remain unchanged in the completion ofF, without loss ofgenerality,



BEST APPROXIMATION THEOREMS 415

we may assume that (F, S) is complete. Let Y = co( G( X), then Y c F is
S-compact and convex. By applying Lemma 2.4, we have

infsuprp(x,z):( sup rp(x,u)
zeYx€X UEG(X)._~EX

Since for each z E Y,

sup rp(x, z) = sup [min p(g(y) - z) -p( g(x) - z)]
XEX xeX J'EX

= minp(g(y) -z) - minp(g(x) - z) = 0,
geX XEX

We have

sup rp(x,u);?O
UEG(X),XEX

Since rp: (X, W( E, E *» x (F, S) -4 IR is continuous and the graph Gr( G) is
compact in (X, W( E, E * » x (F, S), there exists (xo, uo) E Gr( G) such that

rp(xo, uo) = min p(g( y) - uo) - p( g(xo) - uo);? O.
)-'EX

It follows that uoEG(Xo) and

for all x E X.

Now further assume that g(X) is convex. For xEIg(x)(g(xo)\g(X) there
exist v Eg( X) and r> 1 such that z =g(xo) + r(v - g(xo». Suppose that
p(z-uo)<p(g(xo)-uo). Since v=ljrz+(l-ljr)g(xo)Eg(X), we must
have

p(g(xo) - uo) :(p(v - uo) = p Uz + (1 -~) g(xo) - uo)

:(~ p(z - uo) +(I-D p(g(xo) - uo)

< p( g(xo) - uo)

which is impossible. Therefore we must have

for all z E l""x)(g(xo»)'

Since p is continuous, we have

forall zEl"'lx,(g(xo)· I



416 DING AND TARAFDAR

Remark. 3.3. If one take E = F and g: (X, W( E, E * )) -> E as the iden
tity mapping, Theorem 3.3 reduces to Theorem 4 of Ding-Tan [7].
Theorem 3.3 also generalizes Theorem 3 of Ha [14], Theorem 3 of
Park [22], CoroIlary I of Browder [3], Theorem 3.1 of Reich [25] and
Theorem I of Fan [10] to two mappings and two different space setting.
Komiya [16] also has obtained some similar results on two setvalued
mappings, we note that his results are not comparable with ours.

As an equivalent version of Theorem 3.3, we have

THEOREM 3.4. Let X be a nonempty Wee, E* )-compact convex subset of
a Hausdorff topological vector space (E, T) and (F, S) be a Hausdorff
locally convex topological vector space. Suppose that g: (X, W( E, E * )) ->

(F, W( F, F* )) almost quasi-convex and continuous and G: (X, W( E, E *)) ->

2 iF
.

5
) U.S.c. such that each G(x) is S-compact and convex. If one of the

following two conditions is satisfied:

( I) for each p E ql( F, S), each x E X with dl'( g( x), G( x) ) > aand each
UE G(x),

dl'(u, g(X)) <p(g(x) - u);

or

(2) g(X) is convex and for each p E ql(F, S), each x E X with
dl'( g(x), G(x)) > a and each u E G(x),

dl'(u, Ig(X)(g(x))) <p(g(x) - u);

then there exists a point xE X such that g(x) E G(x).

Remark 3.4. Theorem 3.4 generalizes Theorem 5 of Ding-Tan [8] and
Theorem 2 of Reich [26] to two mappings and two different space settings.

THEOREM 3.5. Let X be a nonempty Wee, E* )-compact convex subset ofa
Hausdorff topological vector space (E, T) and (F, S) be a Hausdorff locally con
vex topological vector space. Let g: (X, Wee, E*)) -> (F, W(F, F*)) be almost
quasi-convex and continuous such that g( X) is convex and G: (X, W( E, E *)) ->

2(F, 5) be u.s.c. such that each G(x) is S-compact convex. Further, assume that the
following condition is satiesfied:

(a) for each x E X with g(x) E a(F, W)g(X)\G(x) and u E G(x), there
exists a number A (real or complex, depending on whether the vector space
F is real or complex) with 1..1.1 < I such that Ag(x) + (I - A) u E Ig(xl(g(x)).

Then there exists xE X such that g(x) E G(x).
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Proof Suppose g(X) ¢ G(x) for all x E X. By Theorem 3.3, there exist
X o EX, Uo E G(xo) and p E 9"(F, S) such that

o<p( g(xo) - uo) ~p(z - uo) forall zE/gIX)(g(xo)'

Case l. If g(xo) E int lF. W)(g(X», then Ig(x)(g(xo)) = F and hence
u = ~g(xo) + iuoE F= Iglx )( g(xo)), so that

which is absurd.

Case 2. If g(Xo)EO(F.W)g(X), g(Xo)EOIF.W)g(X)\G(xo) so that by
condition (a), there exists A with 1,11<1 such that Ag(xo)+(l-A)uoE
Ig / x )( g(xo)). It follows that

o<p(g(xo) - uo) ~p(,1g(xo) + (l - ,1)uo - uo)

~ 1,11 p(g(xo) -uo)

which is again a contradiction. Therefore there exists .X E X such that
g(.x) E G(.x). I

Remark 3.5. If one takes E = F = a locally convex Hausdorff topologi
cal vector space and g as the identity mapping, Theorem 3.5 reduces to
Theorem 6 of Ding-Tan [8] and hence Theorem 3.1 improves and
generalizes Theorem 4 of Ha [14], Theorem 3.1 of Reich [25], Theorem 4
of Park [22] and Theorem 3 of Fan [10] to two mappings and two
different space settings.

If the assumptions "X is W(E,E*)-compact, g:(X,W(E,E*»~

(F, W(F, F*)) is continuous and G: (X, W(E, E*)) ~ 2 1F. S) are u.s.c." is
replace by the assumption "X is T-compact, g: (X, T) ~ (F, S) is con
tinuous and G:( X, T) ~ 2( F. S) are u.s.c." in Theorems 3.3, 3.4 and 3.5, then,
by the same argument, we obtain the following theorems.

THEOREM 3.3'. Let X be a nonempty compact convex subset of a
Hausdorff topological vector space E and F be a Hausdorff locally convex
topological vector space. Let g: X ~ 2F be almost quasi-convex and con
tinuous and G: X ~ 2F be u.s.c. such that each G(x) is compact and convex.
Then either (a) there exist .XEX such that g(X)EG(X); or (b) there exist

XoEX, uoEG(Xo) andpEfY'(F) such that

o<p(g(xo) - uo) ~p( g(x) - uo) for all XE X.
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In addition if g( X) is convex, then we have

THEOREM 3.4'. Let X be a nonemtpy compact convex subset of a
Hausdorff topological vector space E and F be a Hausdorff locally convex
topological space. Suppose that g: X -+ F is almost quasi-convex and con
tinuous and G: X -+ 2F be u.s.c. such that each G(x) is compact and convex.
If one of the following two conditions is satisfied:

(1) for each pe.JJJ(F), each XEX with dp(g(x), G(x))>O and each
UEG(X)

dp(u, g(X)) < p(g(x) - u);

(2) g(X) is convex and for each p E 2'(F), each x E X with
dp(g(x), G(x)) > 0 and each u E G(x), d(u, I~(x)(g(x))) <p(g(x) - u); then
there exists a point x E X such that g(x) E G(x).

THEOREM 3.5'. Let X be a nonempty compact convex subset of a
Hausdorff topological vector space and F be a Hausdorff locally convex
topological vector space. Let g: X -+ F be almost quasi-convex and continuous
such that g( X) is convex and G: X -+ 2F be U.S.c. such that each G(x) is compact
and convex. Suppose the following condition is satisfied:

(a) for each XEX with g(x)E8 F (g(X))\G(x) and uEG(X), there
exists a number A (real or complex, depending on whether the vector space
F is real or complex) with J),I < 1 such that Ag(x) +(1- A) uEIg(x)(g(x)).
Then there exists .f E X such that g(x) E G(.f).

COROLLARY 3.1 Let X be a nonempty compact convex subset of a
Hausdorff topological vector space E and F be a Hausdorff locally convex
topological vector space. Let g: X -+ F be almost quasi-convex and continuous
and G: X -+ 2F be U.S.c. with nonempty closed convex values such that

(a) for each x E X, G(x) n g(X) oF~,

(b) g(X) is convex.

Then there exists a point xE X such that g(x) E G(X).

Proof Define a mapping H: X -+ 2F by

H(x) = G(x) ng(X) for each x E X.

Then for each x E X, H(x) is non-empty compact convex. Since G is u.s.c.
and g(X) is compact, H is also u.s.c. Note that for each p E 2'(F) and each
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XEX with dp(g(x), H(x»>O and each uEH(x)=G(x)ng(X), we have
dp(u, g(X» = 0 < dp(g(x), H(x» ~p(g(x) - u). By Theorem 3.4', there exists a
point i E X such that g(i) E H(.X) = G(i) n g(X):=> G(.i). I

Remark 3.7. Corollary 3.1 improves Theorem 2.2 of Mehta-Sessa [20].

REFERENCES

I. J. P. AUBIN, "Mathematical Methods of Game and Economic Theory," revised ed..
North-Holland, Amsterdam/New York, 1982.

2. J. P. AUBIN AND 1. EKELAND, "Applied Nonlinear Analysis," Wiley, New York, 1984.
3. F. E. BROWDER, On a sharpened form of Schauder fixed point theorem, Proc. Nat. Acad.

Sci. USA 74 (1977), 4749-4751.
4. A. CARBONE, A note on a theorem of Prolla, Indian 1. Pure. Appl. Math. 23, No.4 (1991),

257~260.

5. A. CARBONE, An application of KKM-map principle, Internat. J. Math. Sci. 15(4) (1992),
659~662.

6. S. S. CHANG AND J. W. SONG, Coincidence indices for set-valued compact mapping pairs,
J. Math. Anal. Appl. 148 (1990), 469-488.

7. X. P. DING AND K. K. TAN, A minimax inequality with applications to existence of
equilibrium point and fixed point theorems, Colloq. Math. 63 (1992), 233-247.

8. X. P. DING AND K. K. TAN, A set-valued generalization of Fan's best approximation
theorem, Canad. J. Math. 44(4) (1992), 784--796.

9. S. ElLENBERG AND D. MONTGOMERY, Fixed point theorems for multi-valued transforma
tions, Amer. 1. Math. 68 (1946), 214--222.

10. K. FAND, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 1I2 (1969),
234--240.

II. K. FAN, Some properties of convex set related to fixed point theorems, Math. Ann. 226
(1984),519-537.

12. L. GORNIEWICS AND Z. KUCHARSKI, Coindidence for k-set contraction pairs, J. Math.
Anal. Appl. 107 (1985), I-IS.

13. C. W. HA, Extensions of two fixed point theorems of Ky Fan, Math. Z. 190 (1985), 13~16.

14. C. W. HA, On a minimum inequality of Ky Fan, Proc. Amer. Math. Soc. 99 (1987),
680--682.

15. O. P. KAPOOR, Two applications of an intersection lemma, J. Math. Anal. Appl. 41 (1973),
226-233.

16. H. KOMIYA, Coincidence theorem and saddle point theorem, Proc. Amer. Math. Soc. 96
( 1986), 599-602.

17. W. B. KONG, AND X. P. DING, Approximation theorems and fixed point theorems for
multivalued condensing mappings in wedges, J. Math. Anal. Appl. 167 (1992),468-481.

18. T. C. LIN, Some variants of a generalization of a theorem of Ky Fan, BuU. Polish Acad.
Sci. Math. 37 (1989), 629-635.

19. 1. MAWHIN, Equivalence theorems for nonlinear operator equations and coincidence degree
theory for some mappings in locally convex topological vector spaces, J. Differential Equations
12 (1972), 610--636.

20. G. MEHTA AND S. SESSA, Coincidence theorems and maximal elements in topological vector
space, Math. Japonica 5 (1992),839-845.

21. S. PARK, Fixed point theorems on compact convex sets in topological vector spaces,
Contemp. Math. 72 (1988),183-191.



420 DING AND TARAFDAR

22. S. PARK, Fixed point theorems on compact convex sets in topological vector spaces, II,
J. Korean Math. Soc. 26(2) (1989). 175-179.

23. 1. B. PROLLA, Fixed point theorems for set-valued mappings and existence of best
approximations, Numer. Funct. Anal. Optimiz. 5( 4) (1982-83), 449-455.

24. S. REICH, Fixed points in locally convex spaces, Math. Z. 125 (1972),17-31.
25. S. REICH, Approximate selections, best approximations, fixed points and invariant sets,

J. Math. Anal. Appl. 62 (1978),104-113.
26. S. REICH, Fixed point theorems for set-valued mappings, J. Math. Anal. Appl. 69 (1979),

353-358.
27. A. P. ROBERTSON AND W. ROBERTSON, "Topological Vector Spaces," Cambridge Univ.

Press, Cambridge, UK, 1964.
29. W. RUDIN, "Functional Analysis," McGraw-Hill, New York, 1973.
29. V. M. SEHGAL AND S. P. SINGH. A theorem on the minimization of a condensing

multifunction and fixed points, J. Math. Anal. Appl. 107 (1985), 96-102.
30. V. M. SEHGAL AND S. P. SINGH, A generalization to multifunctions of Fan's best

approximation theorem, Proc. Amer. Math. Soc. 102 (1988),534-537.
31. V. M. SEHGAL, S. P. SINGH, AND R. E. SMITHSON, Points and some fixed point theorems

for weakly compact sets, J. Math. Anal. Appl. 128 (1987), 108-111.
32. E. TARAFDAR AND S. K. TEO, On the existence of solutions of the equation Lx E Nx and

a coincidence degree theory, J. Austral. Math. Soc. Ser. A 28 (1979),139-173.


